Serveur d'exploration sur les interactions arbre microorganisme

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Plant secondary chemistry mediates the performance of a nutritional symbiont associated with a tree-killing herbivore.

Identifieur interne : 000226 ( Main/Exploration ); précédent : 000225; suivant : 000227

Plant secondary chemistry mediates the performance of a nutritional symbiont associated with a tree-killing herbivore.

Auteurs : Thomas S. Davis [États-Unis] ; Richard W. Hofstetter

Source :

RBID : pubmed:22624323

Descripteurs français

English descriptors

Abstract

Many herbivores consume microbial food sources in addition to plant tissues for nutrition. Despite the ubiquity of herbivore-microbe feeding associations, few studies examine how host plant phenotypes affect microbial symbionts of herbivores. We tested the hypothesis that chemical polymorphism in a plant population mediates the performance of nutritional microbial symbionts. We surveyed the composition of ponderosa pine resin in northern Arizona, USA, for variation in six monoterpenes, and we approximated four chemical phenotypes. We reared populations of an herbivorous tree-killing beetle (Dendroctonus brevicomis) in ponderosa pine host material, controlling for three monoterpene compositions representing an alpha-pinene to delta-3-carene gradient. Beetles were reared in host material where the dominant monoterpene was alpha-pinene, delta-3-carene, or a phenotype that was intermediate between the two. We isolated nutritional fungal symbionts (Entomocorticium sp. B) from beetle populations reared in each phenotype and performed reciprocal growth experiments in media amended to represent four "average" monoterpene compositions. This allowed us to test the effects of natal host phenotype, chemical polymorphism, and the interaction between natal host phenotype and chemical polymorphism on a nutritional symbiont. Three important findings emerged: (1) fungal isolates grew 25-32% faster when acquired from beetles reared in the intermediate phenotype; (2) the mean growth rate of nutritional fungi varied up to 44% depending on which monoterpene composition media was amended with; and (3) fungal isolates uniformly performed best in the intermediate phenotype regardless of the chemical composition of their natal host. The performance of nutritional fungi related to both the chemical "history" of their associated herbivore and the chemical phenotypes they are exposed to. However, all fungal isolates appeared adapted to a common chemical phenotype. These experiments argue in favor of the hypothesis that chemical polymorphism in plant populations mediates growth of nutritional symbionts of herbivores. Intraspecific chemical polymorphism in plants contributes indirectly to the regulation of herbivore populations, and our experiments demonstrate that the ecological effects of plant secondary chemistry extend beyond the trophic scale of the herbivore-plant interaction.

DOI: 10.1890/11-0231.1
PubMed: 22624323


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Plant secondary chemistry mediates the performance of a nutritional symbiont associated with a tree-killing herbivore.</title>
<author>
<name sortKey="Davis, Thomas S" sort="Davis, Thomas S" uniqKey="Davis T" first="Thomas S" last="Davis">Thomas S. Davis</name>
<affiliation wicri:level="1">
<nlm:affiliation>USDA Agricultural Research Service, 5230 Konnowac Pass Road, Wapato, Washington 98951, USA. tsdavis1@gmail.com</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>USDA Agricultural Research Service, 5230 Konnowac Pass Road, Wapato, Washington 98951</wicri:regionArea>
<wicri:noRegion>Washington 98951</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hofstetter, Richard W" sort="Hofstetter, Richard W" uniqKey="Hofstetter R" first="Richard W" last="Hofstetter">Richard W. Hofstetter</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22624323</idno>
<idno type="pmid">22624323</idno>
<idno type="doi">10.1890/11-0231.1</idno>
<idno type="wicri:Area/Main/Corpus">000225</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000225</idno>
<idno type="wicri:Area/Main/Curation">000225</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000225</idno>
<idno type="wicri:Area/Main/Exploration">000225</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Plant secondary chemistry mediates the performance of a nutritional symbiont associated with a tree-killing herbivore.</title>
<author>
<name sortKey="Davis, Thomas S" sort="Davis, Thomas S" uniqKey="Davis T" first="Thomas S" last="Davis">Thomas S. Davis</name>
<affiliation wicri:level="1">
<nlm:affiliation>USDA Agricultural Research Service, 5230 Konnowac Pass Road, Wapato, Washington 98951, USA. tsdavis1@gmail.com</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>USDA Agricultural Research Service, 5230 Konnowac Pass Road, Wapato, Washington 98951</wicri:regionArea>
<wicri:noRegion>Washington 98951</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hofstetter, Richard W" sort="Hofstetter, Richard W" uniqKey="Hofstetter R" first="Richard W" last="Hofstetter">Richard W. Hofstetter</name>
</author>
</analytic>
<series>
<title level="j">Ecology</title>
<idno type="ISSN">0012-9658</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Coleoptera (microbiology)</term>
<term>Fungi (drug effects)</term>
<term>Fungi (physiology)</term>
<term>Herbivory (physiology)</term>
<term>Pinus (chemistry)</term>
<term>Pinus (metabolism)</term>
<term>Principal Component Analysis (MeSH)</term>
<term>Symbiosis (MeSH)</term>
<term>Terpenes (metabolism)</term>
<term>Terpenes (pharmacology)</term>
<term>Trees (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse en composantes principales (MeSH)</term>
<term>Animaux (MeSH)</term>
<term>Arbres (MeSH)</term>
<term>Champignons (effets des médicaments et des substances chimiques)</term>
<term>Champignons (physiologie)</term>
<term>Coléoptères (microbiologie)</term>
<term>Herbivorie (physiologie)</term>
<term>Pinus (composition chimique)</term>
<term>Pinus (métabolisme)</term>
<term>Symbiose (MeSH)</term>
<term>Terpènes (métabolisme)</term>
<term>Terpènes (pharmacologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Terpenes</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Pinus</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Pinus</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Fungi</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Champignons</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Pinus</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Coléoptères</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Coleoptera</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Pinus</term>
<term>Terpènes</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Terpènes</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Terpenes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Champignons</term>
<term>Herbivorie</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Fungi</term>
<term>Herbivory</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Principal Component Analysis</term>
<term>Symbiosis</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse en composantes principales</term>
<term>Animaux</term>
<term>Arbres</term>
<term>Symbiose</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Many herbivores consume microbial food sources in addition to plant tissues for nutrition. Despite the ubiquity of herbivore-microbe feeding associations, few studies examine how host plant phenotypes affect microbial symbionts of herbivores. We tested the hypothesis that chemical polymorphism in a plant population mediates the performance of nutritional microbial symbionts. We surveyed the composition of ponderosa pine resin in northern Arizona, USA, for variation in six monoterpenes, and we approximated four chemical phenotypes. We reared populations of an herbivorous tree-killing beetle (Dendroctonus brevicomis) in ponderosa pine host material, controlling for three monoterpene compositions representing an alpha-pinene to delta-3-carene gradient. Beetles were reared in host material where the dominant monoterpene was alpha-pinene, delta-3-carene, or a phenotype that was intermediate between the two. We isolated nutritional fungal symbionts (Entomocorticium sp. B) from beetle populations reared in each phenotype and performed reciprocal growth experiments in media amended to represent four "average" monoterpene compositions. This allowed us to test the effects of natal host phenotype, chemical polymorphism, and the interaction between natal host phenotype and chemical polymorphism on a nutritional symbiont. Three important findings emerged: (1) fungal isolates grew 25-32% faster when acquired from beetles reared in the intermediate phenotype; (2) the mean growth rate of nutritional fungi varied up to 44% depending on which monoterpene composition media was amended with; and (3) fungal isolates uniformly performed best in the intermediate phenotype regardless of the chemical composition of their natal host. The performance of nutritional fungi related to both the chemical "history" of their associated herbivore and the chemical phenotypes they are exposed to. However, all fungal isolates appeared adapted to a common chemical phenotype. These experiments argue in favor of the hypothesis that chemical polymorphism in plant populations mediates growth of nutritional symbionts of herbivores. Intraspecific chemical polymorphism in plants contributes indirectly to the regulation of herbivore populations, and our experiments demonstrate that the ecological effects of plant secondary chemistry extend beyond the trophic scale of the herbivore-plant interaction.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22624323</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>06</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>09</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0012-9658</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>93</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2012</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Ecology</Title>
<ISOAbbreviation>Ecology</ISOAbbreviation>
</Journal>
<ArticleTitle>Plant secondary chemistry mediates the performance of a nutritional symbiont associated with a tree-killing herbivore.</ArticleTitle>
<Pagination>
<MedlinePgn>421-9</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Many herbivores consume microbial food sources in addition to plant tissues for nutrition. Despite the ubiquity of herbivore-microbe feeding associations, few studies examine how host plant phenotypes affect microbial symbionts of herbivores. We tested the hypothesis that chemical polymorphism in a plant population mediates the performance of nutritional microbial symbionts. We surveyed the composition of ponderosa pine resin in northern Arizona, USA, for variation in six monoterpenes, and we approximated four chemical phenotypes. We reared populations of an herbivorous tree-killing beetle (Dendroctonus brevicomis) in ponderosa pine host material, controlling for three monoterpene compositions representing an alpha-pinene to delta-3-carene gradient. Beetles were reared in host material where the dominant monoterpene was alpha-pinene, delta-3-carene, or a phenotype that was intermediate between the two. We isolated nutritional fungal symbionts (Entomocorticium sp. B) from beetle populations reared in each phenotype and performed reciprocal growth experiments in media amended to represent four "average" monoterpene compositions. This allowed us to test the effects of natal host phenotype, chemical polymorphism, and the interaction between natal host phenotype and chemical polymorphism on a nutritional symbiont. Three important findings emerged: (1) fungal isolates grew 25-32% faster when acquired from beetles reared in the intermediate phenotype; (2) the mean growth rate of nutritional fungi varied up to 44% depending on which monoterpene composition media was amended with; and (3) fungal isolates uniformly performed best in the intermediate phenotype regardless of the chemical composition of their natal host. The performance of nutritional fungi related to both the chemical "history" of their associated herbivore and the chemical phenotypes they are exposed to. However, all fungal isolates appeared adapted to a common chemical phenotype. These experiments argue in favor of the hypothesis that chemical polymorphism in plant populations mediates growth of nutritional symbionts of herbivores. Intraspecific chemical polymorphism in plants contributes indirectly to the regulation of herbivore populations, and our experiments demonstrate that the ecological effects of plant secondary chemistry extend beyond the trophic scale of the herbivore-plant interaction.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Davis</LastName>
<ForeName>Thomas S</ForeName>
<Initials>TS</Initials>
<AffiliationInfo>
<Affiliation>USDA Agricultural Research Service, 5230 Konnowac Pass Road, Wapato, Washington 98951, USA. tsdavis1@gmail.com</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hofstetter</LastName>
<ForeName>Richard W</ForeName>
<Initials>RW</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Ecology</MedlineTA>
<NlmUniqueID>0043541</NlmUniqueID>
<ISSNLinking>0012-9658</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013729">Terpenes</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001517" MajorTopicYN="N">Coleoptera</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005658" MajorTopicYN="N">Fungi</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060434" MajorTopicYN="N">Herbivory</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D028223" MajorTopicYN="N">Pinus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025341" MajorTopicYN="N">Principal Component Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="Y">Symbiosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013729" MajorTopicYN="N">Terpenes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>5</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>5</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>6</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22624323</ArticleId>
<ArticleId IdType="doi">10.1890/11-0231.1</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Hofstetter, Richard W" sort="Hofstetter, Richard W" uniqKey="Hofstetter R" first="Richard W" last="Hofstetter">Richard W. Hofstetter</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Davis, Thomas S" sort="Davis, Thomas S" uniqKey="Davis T" first="Thomas S" last="Davis">Thomas S. Davis</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/TreeMicInterV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000226 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000226 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    TreeMicInterV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22624323
   |texte=   Plant secondary chemistry mediates the performance of a nutritional symbiont associated with a tree-killing herbivore.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22624323" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a TreeMicInterV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Thu Nov 19 16:52:21 2020. Site generation: Thu Nov 19 16:52:50 2020